GE Power Conversion

Product Information Packet

January 13, 2017

Data shown is for the current revision model #. Ensure your nameplate model # matches.

Model Number:	5KS286SAE222A
Catalog Number:	V987
Instruction Manual:	GEK-95655
Connection Diagram:	GEM2034E-FIG9
Outline Drawing:	4002B5828PLP5210

Accessory Connection Diagrams				
Bearing Thermocouple:	None	Heater:	3027JE-1	
RTD:	None	Thermistor:	None	
Thermostat:	None	Winding Thermocouple:	None	
Bearing RTD:	None			

Table of Contents	
Specification	01
Performance Characteristics	02
Outline Drawing	03
Connection Drawing(s)	04

Marks:

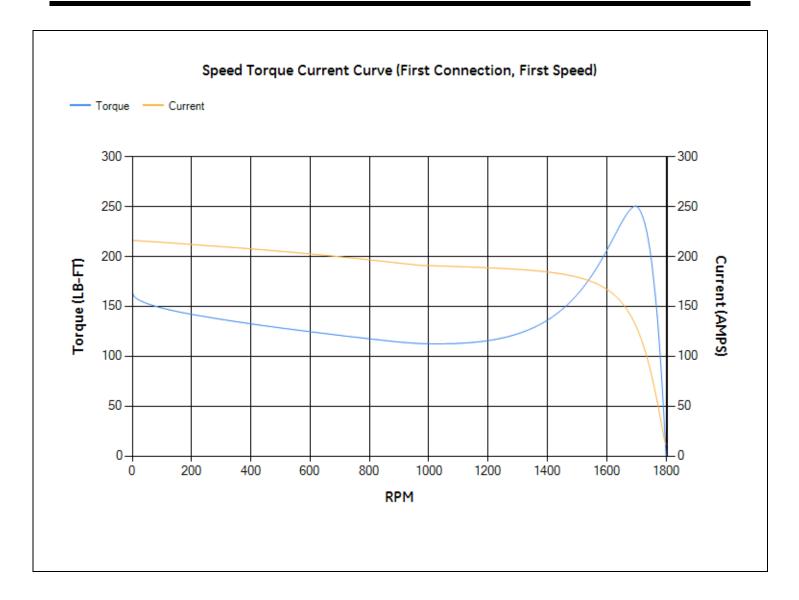
MODEL NUMBER:	5KS286SAE222A	Estimated Weight:	510 Lbs
Outline Drawing:	4002B5828PLP5210	Time Rating:	CONT
Connection Diagram:	GEM2034E-FIG9	Enclosure:	TEFC
Instruction Book:	GEK-95655	Encl Construction:	SD
Design Code:	28BD1157A	Ambient Max(°C):	40
Туре:	KS	Alt Ambient Max(°C):	
Frame:	L286HP10	Insulation Class:	Н
Phases:	3	NEMA Design:	В
Poles:	4	Nominal Efficiency:	93.6 %
Output Power:	30HP 22.2KW	Guaranteed Efficiency:	92.4
RPM:	1775	3/4 Load Efficiency:	94.1
Voltage:	230/460	KVA Code:	G
Hertz:	60	Max KVAR:	8.2
Amps - FL:	69.8/34.9	Power Factor:	86.0
Service Factor:	1.15	Bearing - DE:	6310ZC3
Alt Service Factor:		Bearing - ODE:	6310-2ZC3

Enclosure is Totally Enclosed Fan-Cooled

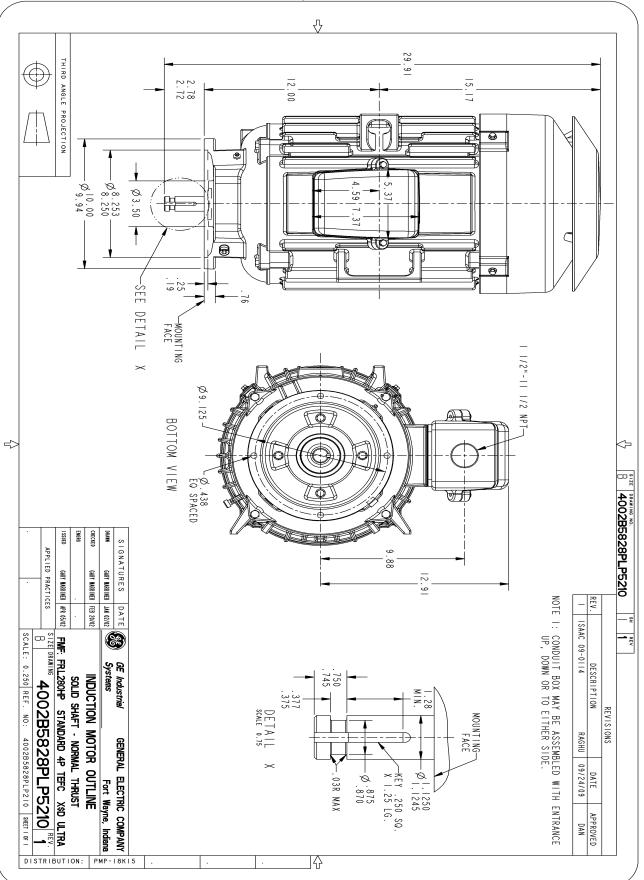
Stamped Nameplate Notes:

PREMIUM EFFICIENT MOTOR HTR LDS H 115V 60W SEVERE DUTY INVERTER DUTY PER NEMA MG1 PART 31 ALTERNATE RATING FOR PWM CONTROL: 1.0 SF VAR TORQUE RANGE 0-60 HZ IP 55 SUITABLE FOR 190/380V 50 HZ WITH 83.6/41.8 AMPS AND 1465 RPM AT 1.0 S.F

Additional Information:


4P - HP EXTN C/BOX 137 CU IN-1.50 NPT AUX LEADS EXIT WITH MOTOR LEADS RCF 5000 CPM, STATIC DEFLECTION .0014 INCHES & CENTER OF GRAVITY 12.00 INCHES SOLID SHAFT NORMAL THRUST OIL RESISTANT SLEEVING ON LEADS BEARING LIFE 8760 HOURS AT 968 LB THRUST SLINGER ON BOTH ENDS AND SS T DRAIN

Model Numbe	er:5KS286SAE2	222A				Ja	nuary 13, 2017
Performance <u>Marks</u> :	nce Characteristics 1st Winding 1st Connection		Desig	<u>ın: 28BD1157A</u>			
LOAD %	125.0	115.0	100.0	75.0	50.0	25.0	0.0
% EFF	92.5	92.93	93.68	94.1	94.05	91.75	0.00
% PF	86.93	86.75	86.04	82.98	75.01	53.73	4.5
AMPS	43.65	40.05	34.82	26.97	19.9	14.24	11.48
TORQ(FL)#FT AMPS(LR)	88.62 216.09		(LR)%FL START	184.78 0.38	TORG	Q(BD)%FL	281.75


This motor is capable of two cold or one hot start with a maximum connected load inertia of 969 Lb-Ft Sq (40.79 Kg-meter Sq)at 100% voltage, where the load torque varies with the square of the speed. Acceleration time with maximum inertia and the above load type is 51 seconds. Safe stall time at 100% voltage is 90 seconds cold, 61 seconds hot. Rotor inertia is 5.44 Lb-Ft Sq (0.23 Kg-meter Sq).

Open Circuit A-C:	0.635	Short Circuit D-C: 0.	016
Short Circuit A-C:	0.027	X/R Ratio: 5.	921
Stator Slots:	48	Rotor Slots:	40

NAME:320002939 OBJECT:4002B5828PLP5210 DATE:24-Sep-09 19:53:07

	Connection Diagram GEM2034E-FIG9					
		DUA	AL VOI	TAGE]	
	CONNECTION 2 \$\Delta / 1 \$\Delta \$\Del					
	$\begin{array}{c} TI \\ Tg \\ Tg \\ Ta \\ Ta \\ Ta \\ Ta \\ Ta \\ Ta$					
	VOLTS	LI	L2	L3	TOGETHER	
2۵	LOW	TI-T6 T7	T2-T4 T8	T3-T5 T9		
۱۵	HIGH	ΤI	Τ2	Τ3	T4-T7,T5-T8, T6-T9	

⊢ ⊢ H	страни н
CONTROL	L1 L2
VOLTAGE ONLY	НН

